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Abstract Many aspects of metazoan morphogenesis find parallels in the commu-
nal behavior of microorganisms. The cellular slime mold D. discoideum has long
provided a metaphor for multicellular embryogenesis. However, the spatial pat-
terns in D.d. colonies are generated by an intercellular communication system
based on diffusible morphogens, whereas the interactions between embryonic cells
are more often mediated by direct cell contact. For this reason, the myxobacteria
have emerged as a contending system in which to study spatial pattern formation,
for their colony strutures rival those of D.d. in complexity, yet communication be-
tween cells in a colony is carried out by direct cell contacts. Here I sketch some of
the progress my laboratory has made in modeling the life cycle of these organisms.
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1. Introduction: Myxobacteria mysteries

In 1971, as a postdoc, I attended my first Theoretical Biology Gordon Research
Conference, chaired that year by Simon Levin. There Simon introduced me to Lee
Segel, and my life changed. Although we talked science innumerable times, I never
coauthored a paper with Lee. However, he has been one of the intellectual spiritus
movens in my scientific career. Moreover, he introduced me to two of my most
significant collaborators: Garry Odell and Jim Murray. Lee always saw further
and deeper than the rest of us, and frequently pointed us in directions we might
not have otherwise traveled. As luck would have it, I was able to contribute a
small bit back to Lee, for some of his work in theoretical immunology using a tool
that I had introduced with Alan Perelson in 1979, so-called “shape space,” whose
implications I did not discern at the time. Because of Lee’s early work with Evelyn
Keller on pattern formation in E. coli, and through my collaborations with Garry
and Jim, my research returned periodically to the mysteries of morphogenesis,
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although in a number of different settings. Most recently, this recurrent theme
arose once again, this time in the setting of bacterial pattern formation.

Myxococcus xanthus is a humble organism; it causes no diseases, but lives ob-
scurely on the forest floor where it glides slowly in large assemblies over surfaces
in search of its prey. The story of these organisms might have remained in obscu-
rity but for the research of Dale Kaiser, whose laboratory at Stanford has devoted
several decades to unraveling the many mysteries of their amazingly complex life
cycle. A chance encounter with Dale at a meeting ignited my curiosity and led to
a number of investigations that shed some light on the mechanisms underlying the
mysteries. Here I will sketch some recent explorations in my laboratory.

At the time I met Dale, I was struck by three aspects of myxobacteria morpho-
genesis. First, was the puzzle of how they moved. Bacteria move in many more
ways than eukaryotic cells; swimming bacteria can propel themselves using rotary
propellers, or flagella. Some, like marine cyanobacterium Synechococcus swim
with no detectable surface organelles; how they accomplish this remains myste-
rious (McCarren et al., 2005). Other bacteria move smoothly across surfaces, a
means of locomotion called ‘gliding’. In most cases, no one knows how they do
this. However, in myxobacteria, some things have come to light recently (Kaiser,
2004; Kaiser and Welch, 2004; Nudleman and Kaiser, 2004; Nudleman et al., 2005).
These bacteria have two ways of moving, called A (adventurous) and S (social)
motility (McBride, 2000, 2001). As the name suggests, the former works for iso-
lated bacteria, and the latter works only when they move in groups.

A-motility is associated with slime secretion, and individuals tend to follow slime
trails laid down by recent passersby. Recently, we were able to show that the thrust
generated by the polyelectrolyte slime emerging from nozzles at the cell poles
could account for the observed speed of S− mutants (Wolgemuth et al., 2002). S-
motility is accomplished by the extension, attachment, and retraction of type 4 pili
(Nudleman and Kaiser, 2004). Retraction is driven by a hexameric motor called
PilT, which can generate ∼120 pN of force, the strongest of any known protein
motor (Maier et al., 2002, 2004).

Under normal conditions, both motors operate in tandem: the pili extending
from the anterior pole, pulling the cell forwards, and the slime extruding from
the posterior nozzles, pushing the cell in the same direction. A cell reverses its
direction of gliding not by turning, but by switching the polarity of its motors: the
pili retract from one end and commence extending from the other, while the slime
extrusion also switches ends. It is not known how this switch is carried out, but
recently it was found that the switch is foretold by the fast migration of a motility
protein (FrzS) from the anterior to posterior pole (Mignot et al., 2005).

As individuals, myxobacteria behave in a very boring way. They simply oscillate
back and forth, reversing direction every few minutes. Moreover, they move quite
slowly, less than one body length (4–6 µm) per min. But myxobacteria are social
organisms whose life depends on moving in very large groups. This is because, de-
spite their leisurely speed, they are predators. Their prey include swimming bacte-
ria like E. coli that move hundreds of times faster than they glide. They accomplish
this by secreting peptides and exoenzymes that attract other bacteria and then di-
gest them externally, allowing the myxobacteria to absorb their amino acids from
the deadly soup surrounding the colony. An individual bacterium could not secrete
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sufficient amount of enzymes to incapacitate a prey, and so remaining within the
“wolf pack” of swarming compatriots is essential. Thus the oscillations of isolated
individuals is a good strategy, increasing the probability of being reabsorbed by
the streaming colony rather than wandering off randomly.

The swirling and swarming of a myxobacteria colony can be followed in time-
lapse cinematography; but their really interesting behavior does not manifest it-
self until food runs scarce, and the cells commence to revert to starvation mode.
To survive the famine, cells begin to stream into large aggregations, or “fruiting
bodies” where they sporulate and lie dormant until better times reappear (Kaiser,
2004; Kaiser and Welch, 2004; Kaiser and Yu, 2004). Figure 1 shows a sequence of
snapshots of the life cycle.

In laboratory cultures, colonies on their way to fruiting body formation generate
elaborate wave patterns that are unlike any other observed in biology, chemistry,
or physics (Igoshin et al., 2004c, 2001; Sager and Kaiser, 1994; Welch and Kaiser,
2001). Figure 2a shows an example of these waves. While the fruiting bodies in lab-
oratory strains of M. xanthus are simple mounds of cells and spores, related species
of myxobacteria produce much more elaborate structures, with symmetrical arms
reminiscent of slime mold fruiting bodies. Figure 2b shows one example. A com-
bination of theoretical and experimental investigations has begun to unravel the
mysteries of myxobacteria morphogenesis. Here we will sketch a sampling of these
investigations.

2. Accordion waves

One of the most striking phenomena associated with myxobacteria morphogen-
esis is their collective developmental waves. This ‘ripple phase’ appears before
or during the formation of fruiting bodies (Igoshin et al., 2001, 2004b; Welch
and Kaiser, 2001; Kaiser and Welch, 2004; Sliusarenko et al., 2006). These waves
may be a delicate phenomenon, since they have not yet been observed out-
side laboratory cultures. However, despite their lack of “robustness”—indeed,
because of it—they provide the key to understanding the later stages of colony
morphogenesis for they reflect key properties of the intercellular communication
system.

Two kinds of laboratory cultures have been developed to study the ripple phase,
the submerged culture of Roy Welch in Dale Kaiser’s lab (Welch and Kaiser,
2001), and the monolayer culture of Oleksii Sliusarenko in David Zusman’s lab
(Sliusarenko et al., 2006). Each reveals important aspects of the ripple phase.
Figure 3a shows density waves swirling around the periphery of a multilayer sub-
merged culture. Movies of the waves can be retrieved from Sliusarenko et al.
(2006). They show a striking phenomenon: when the waves collide, they appear
to pass through one another unaffected, analogous to soliton waves in fluids. But
this is an illusion. Closer inspection reveals that the waves actually reflect off
one another. Further, following fluorescently marked individuals shows that ev-
ery cell is simply oscillating back and forth; only the cell density gives the appear-
ance of propagating waves. We call this illusion “accordion waves” to distinguish
them from the more familiar waves generated by D. discoideum colonies where
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Fig. 1 Stages of myxobacterial development taken from the movies. Individual cells in a mono-
layer culture can be florescently tagged (red in these photos) and followed. (a) swarming stage
(high nutrients). (b) After 8 h of starvation, in the interior of the colony almost no structure is
visible. (c) After 10 h of starvation, aggregate formation has started. (d) After 24 h of starvation
ripples commence, along with streams (e), (f) Ripples around a young fruiting body. (h) After 48 h
of starvation the mature fruiting body with spores has formed (h) A schematic cross-section of a
fruiting body.

colliding waves annihilate one another, similar to waves in diffusion-reaction
systems.

The monolayer culture provides a close-up view of what happens when waves
collide. Figure 3b,c shows two wavefronts colliding. Movies of these monolayer
collisions reveal much about the mechanism that generates the accordion waves.
In particular, they arise from the synchronized behavior of many cells, each of
which is oscillating back and forth in place. To model this process we first discuss
the basis of individual oscillations.
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Fig. 2 Myxobacteria morphogenesis. (a) Ripple phase showing concentric, spiral, and parallel
waves (from Sager and Kaiser, 1994). (b) Fruiting bodies of a related myxobacteria species C.
crocatus (from Grilione and Pangborn, 1975).

3. The Frizilator

Understanding the collective behavior of myxobacteria begins with the behavior
of isolated individuals. When separated from its hunting colony swarm a bacterium
will simply oscillate back and forth, with no net drift in any direction. These rever-
sals are not random; that is, the residence times in the “forward” and “reverse”
directions are not exponentially distributed. This suggests strongly that reversals
are controlled by an internal biochemical oscillator, the “reversal clock” (Igoshin
et al., 2004a). However, the clock is not very precise; the oscillation period is about
8 min, but with a variance of 3–4 min. A substantial body of experiments, both bio-
chemical and genetic, has elucidated a great deal of the circuitry that controls the
reversals; this is summarized in Fig. 4a. The essence of the circuit is a chain of
three covalent modifications of proteins in the frz gene system (Bustamante et al.,
2004). A feedback is required to turn this highly nonlinear system into an oscilla-
tor. Several pathways will work, and the one shown in the figure is the most likely
prospect, and the one we have incorporated into the model.

Fig. 3 Ripple phase cultures. (a) Waves around the periphery of a submerged multilayer culture
(from Welch and Kaiser, 2001). The inset is a closeup of the waves showing the fruiting bodies
forming at loci where the waves intersect. (b) Closeup of waves in a monolayer culture (from
Sliusarenko et al., 2006).
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Fig. 4 The Frizilator model. (a) Schematic represtation of the Frizilator oscillator based on a
chain of phosphorylation-methylation-phosphorylation modifications with a negative feedback.
(b) Representation of the limit cycle in the concentration space. (c) Bifurcation diagram of [FrzE]
oscillation amplitude vs. Michaelis–Menten saturation concentration showing the subcritical bi-
furcation. The solid and dashed lines show the stable and unstable regions, respectively. (d) The
concentration waveforms of the active enzymes plotted vs. time. (e) The phase shift effect on
the oscillation due to an impulse signal in the concentration of FrzF. (f) The resetting map of
the frizilator: the new phase of the clock after receiving the same signal at different initial phase
points.
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For notational convenience, we neglect the “Frz” in the proteins’ names. We
consider that each covalent modification obeys Michaelis–Menten kinetics. Then
the variables can be expressed in terms of the activated fraction of each protein,
defined as

f = [F∗]
[F∗] + [F]

,

c = [CD∗]
[CD∗] + [CD]

, (1)

e = [E∗]
[E∗] + [E]

,

where the letters with a star are the activated forms and without star the inactive
forms. Then the dynamics of the system is governed by:

d
dt

f = Va(1 − f )
Ka + (1 − f )

− e
Vd f

Kd + f
,

d
dt

c = f
Vm(1 − c)

Km + (1 − c)
− Vdmc

Kdm + c
, (2)

d
dt

e = c
Vp(1 − e)

Kp + (1 − e)
− Vdpe

Kdp + e
.

When the parameters taken from experiments are inserted into Eq. (2), they
generate a limit cycle like that shown in Fig. 4b. The waveforms of f, c, and e are
shown in Fig. 4d: f(t) is a sawtooth, and e(t) is nearly a spike train. Cell reversals
are triggered by the spikes in e. When this limit cycle is installed into the agent
model described below, we will see that the spatial patterns are affected by several
features of these oscillations.

1. Individual cells oscillate in place, or remain stationary. While the amplitude
of the oscillations is variable, their onset is all-or-none: i.e., not as smoothly
increasing amplitude. This is consistent with the finding shown in Fig. 4c: the
onset of oscillations in the Frizilator takes place via a subcritical Hopf bifur-
cation.

2. The waveform of the signal receiving component, FrzF (f(t) in Eq. (2)), is
asymmetrical, as shown in Fig. 4d. Thus a random perturbation in the cycle
is much more likely to hit the rising portion of the FrzF oscillation than the
falling portion.

3. The limit cycle is fairly ‘stiff’. That is, a perturbation of the cycle by an impulse
in FrzF returns the system to its limit cycle quickly, within one period.

Property 3 will permit us to replace the limit cycle by a phase-resetting map in
the mean field model. This is shown schematically in Fig. 4e. A collision induced
perturbation in FrzF results in a nearly immediate shift in the phase, φ(t), of the
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oscillations by an amount �φ. The phase magnitude of the phase shift as a function
of the phase of the perturbation is shown in the bottom part of Fig. 4e. The asym-
metry of the waveform in f(t) is reflected in the asymmetry of the resetting map:
phase advances are much more likely than phase retardations because the dura-
tion of the increasing part of the f(t) sawtooth is much longer than the decreasing
part. Figure 4f shows a common representation of the signaling event as a phase
resetting map of new phase vs. old phase. Both old and new phases are periodic, so
that the phase on top (right) and the phase resetting map is identical to the phase
on the bottom (left) (Winfree, 2001; Oster, 2004). Thus the phase resetting process
can be viewed as a flow on a torus (inset in Fig. 4f).

Finally, the limit cycle specified by Eq. (2) specifies a fixed period of oscillation,
which is surely not realistic. The simplest remedy is to add random terms, ri (t), to
each equation to simulate the effect of diffusion in the phase.

4. Driving morphogenesis with the Frizilator

The most straightforward way to model a population of motile cells is to construct
an “agent” model that tracks the position and orientation of each cell. Such models
have been used in a variety of settings (Schweitzer, 2003). Their advantage is that
they are easy to program and one can incorporate elaborate rules of “behavior.”
Their disadvantage compared to mean field models is that it is frequently difficult
to intuit global insights from simulations alone. Therefore, we attacked the prob-
lem from both perspectives.

4.1. Agent model

We track a single bacterium by writing Newton’s second law with an added force
generated by the bacterial motor, Fm: mdv/dt = −ζv + Fm + r(t), where m is the
bacterial mass, ζ is the drag coefficient between the bacterium and the slime, and
r(t) is a random force. To write this in components, we use the coordinates shown
in Fig. 5a to track individual bacteria. The position of the cell center is given by

Position :
d
dt

x = v cos(θ),
d
dt

y = v sin(θ), (3)

where the cell orientation, θ(t), with respect to the horizontal is computed from

Orientation :
d
dt

θ = −
∑

j :|�r j −�ri |≤r0

sin(2(θi − θ j ))
τθ︸ ︷︷ ︸

Alignment with neighbors

+ π δ(t − trev)︸ ︷︷ ︸
Collision induced reversal

+ rθ (t)︸︷︷︸
Angular fluctuations

(4)

In the first term on the right-hand side the summation is over all neighbor cells,
j, the centers of which are separated by no more than a constant, r0, from the test
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Fig. 5 Agent model. (a) Coordinate representation of one cell. A cell is characterized by its
coordinates x and y, its orientation θ and its speed v. Two counter-aligned cells interact when
their head regions overlap. (b) A snapshot of the simulations showing the wave pattern at the
moment of wave collision.

cell, i. θ j and θ i are the orientation angles of these cells. This term accounts for the
steric tendency of the rod shaped cells to align with one another (see Appendix A
of Csahok and Czirok (1997) for the derivation). Autonomous reversals due to
the cellular reversal clock are accounted for by installing the Frizilator limit cycle
into each cell. The second term in (4) with the Dirac delta function represents the
reversals of the cells when the orientation rapidly changes by π . Randomness in
phase is accounted for by random terms in the Frizilator Eq. (2). The speed of
the cells is maintained nearly constant by imposing a relaxation time, τ = m/ζ that
returns the speed to its average value, v0 = Fm/ζ determined by the force balance
between the propulsion motors and the frictional drag:

Speed :
d
dt

v = − (v − v0)
τv︸ ︷︷ ︸

Relaxation of speed to v0

+ rv(t)︸︷︷︸
Fluctuations in speed

. (5)

In order to accurately model the accordion waves, one final ingredient is neces-
sary. Cell-to-cell signaling must by asymmetric: head-to-head collisions are much
more effective mediators of cell signaling than head-to-tail collisions. The rationale
for this is that S-motility pili can pull head-to-head colliding cells into outer mem-
brane contact where receptor–ligand signaling can take place (Nudleman et al.,
2005). However, head-to-tail collisions encounter the resistance of the viscoelastic
slime extruded from each cell’s posterior (Wolgemuth et al., 2002); this is sufficient
to make cell contact much less likely. A few possible mechanisms to determine the
moment of collision can be implemented numerically. The rule for collisions used
in these simulations considered two cells interacting if their leading edges were lo-
cated within a certain interaction distance (∼one cell diameter), and the signaling
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strength was maximum for opposite moving cells and zero for aligned cells; i.e.:

S ∝ sin [(θi − θ j )/2]2
.

Installing the Frizilator limit cycle into each cell, simulations of the model
Eqs. (1)–(5) were carried out for ∼105 cells. A frame from the movie is shown
in Fig. 5b. The model reproduces the monolayer experiments rather closely, ex-
cept for certain effects that depend on the finite size of cells (see Sliusarenko et al.,
2006).

4.2. Mean field model

While it is satisfying that the agent model can reproduce the accordion waves, addi-
tional insight into their character can be gleaned from an approximate mean field
model that tracks only the local cell density. This approach was quite successful
in modeling the multilayer cultures (Igoshin et al., 2001, 2004a,b,c,d; Igoshin and
Oster, 2003). However, in the monolayer cultures the area cell density is usually
either near zero or unity, and so the mean field approach is less valid. The model
described here is based on the paper by Igoshin et al. (2001) with modifications to
make it compatible with the agent-based model described above. The major mod-
ification is removing the unnecessary assumption of nonlinear density dependence
in intercellular signaling.

For simplicity, we describe only the situation corresponding to the multilayer
waves (containing more cells) shown in Fig. 3a where cells are moving mostly par-
allel to the x-axis (parallel to the edge of the colony). Then we can write a conser-
vation equation for the cell density in space and phase, n(t, x, y, φ):

∂n±
∂t

= −
[

∂n±
∂x

+ ∂

∂φ
(ω±n±)

]
︸ ︷︷ ︸

Convection in space and phase

+
[

Dx
∂2n±
∂x2

+ Dy
∂2n±
∂y2

+ K
∂2n±
∂φ2

]
︸ ︷︷ ︸

Diffusion in space and phase

, 0 < φ < π, t > 0 (6)

Here the (±) subscript refers to cells moving to the right and left; i.e., counter-
clockwise or clockwise along the colony periphery. Dx ,y are the spatial diffusion
coefficients and K is the phase diffusion coefficient. The boundary conditions were
chosen periodic.

This must be augmented by the phase resetting map that specifies what
happens—on average—when opposite-moving cells collide. Thus the phase veloc-
ity, ω±, can be tracked via the resetting map, ψ(φ), as discussed above:

ω± = ω0︸︷︷︸
Unperturbed phase velocity

+
Collision induced phase resetting︷ ︸︸ ︷
ω1

Amplitude
N∓ (x, y, t) ψ(φ)

Resetting map
, (7)



Bulletin of Mathematical Biology (2006) 68: 1039–1051 1049

Fig. 6 Experimental (a) and mean field model of the peripheral waves in Fig. 3a. In the model,
the tilt is a consequence of the curvature of the colony edge.

where N± = ∫ π

0 n±(t, x, y, φ) dφ is the density of opposite-moving cells.
Figure 6a and b shows that the mean field model predicts well the peripheral

waves in the multilayer colony of Fig. 3a. Moreover, the wavelength, λ, predicted
by the mean field model is

λ ≈ 2 〈v〉 Trev (8)

where 〈v〉 is the mean gliding velocity and Trev is the mean time between rever-
sals. It turns out that the spacing of the fruiting bodies around the periphery of the
submerged colony in Fig. 3a is approximately equal to the wavelength. Cells can
be observed streaming between adjacent fruiting bodies, with larger aggregations
growing at the expense of smaller ones until the final spacing is achieved. This can
be understood by realizing that individual bacteria, since they signal by direct con-
tact only, have no information about cell density further away than the distance
they can glide before reversing. This is their “event horizon,” to borrow a term
from astrophysics (see Fig. 7a). Moreover, the larger the aggregation of a forming
fruiting body, the longer will the residence time of a bacterium in it before escap-
ing to stream to an adjacent aggregation. Thus larger aggregations will grow and
smaller ones will shrink.

Fig. 7 The morphogenetic length scale. (a) The spacing of fruiting bodies along the periphery
of a colony in the multilayer culture is determined by the “event horizon”: each cell senses cell
density only one reversal distance away (Welch and Kaiser, 2001). (b) Spacing of protrusions on
a branching fruiting body presumably follows the same rule.
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5. Conclusion: A long journey begun

Our modeling studies demonstrate that the existence of the accordion waves re-
quire several ingredients. First, each cell contains an internal biochemical oscillator
whose waveform is asymmetric, so that phase advances are more likely than phase
retardations. Second, cell signaling is via direct cell contact and is asymmetric, so
that head-to-head collisions shift the clock phase more than head-to-tail collisions.

The agent and mean field models complement one another. For example, the
agent model shows the effects of the limit cycle properties on the patterns, and
the mean field model gives an estimate of the wavelength. Together, they give
confidence that we understand the basic principles underlying these unique mor-
phogenetic patterns. But what about the later stages of morphogenesis? A key ob-
servation gives hope that the models will have something to say about the growth
of elaborate structures such as those shown in Fig. 2b. The monolayer cultures fre-
quently give way to multilayer swarms, where several tiers of cells glide more or
less independently on top of one another, like floors in a parking structure. They
are actually gliding on slime layers that separate the tiers, and so their directions
are only loosely correlated. This layered quality persists into the formation of the
fruiting body.

The last panel in Fig. 1 shows a cross section of a fruiting body deduced from
a movie where the focal plane was moved vertically to obtain a “cat-scan” of the
fruiting body structure. The experiments revealed that the fruiting body is a lay-
ered structure wherein the volume fraction of the cells is not more than 50%, the
rest being hydrated slime. In the center of the fruiting body are spores, and cell
migration is mainly on the surface layer or two. Consequently, the same length
scale set by the “event horizon” in Eq. (8) constrains the spacing of the surface ag-
gregations that will grow into the “arms” shown in Fig. 2b. This is shown schemat-
ically in Fig. 7b.1 Thus, the hope is that the pattern scale deduced from the ripple
phenomenon will repeat itself at higher levels of organization. And perhaps the in-
sights gained from this humble bacterium may provide clues to pattern formation
in higher organisms. For example, the formation of somites in vertebrates, that
arises from cellular clocks synchronized by direct contact in a wave-like fashion
(Holley and Takeda, 2002; Lewis, 2003).
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